# Comparison of AMSR-E Soil Moisture Retrievals to SMOS Retrievals and In-Situ Data

Ming Pan, Alok Sahoo, and Eric Wood

Princeton University

## **Single-Channel Approach**

# Land Surface Microwave Emission Model (LSMEM, Drusch et al.)

- Surface->TOA radiative transfer model
- Based on physical parameters
  - Soil
  - Vegetation
  - Surface properties
  - Surface water

To retrieve soil moisture, a simple inversion (i.e. root finding) is employed to find the soil moisture values that gives the best match to the observed brightness temperature.

 Use single channel/single polarization (for AMSR-E, 10.65 GHz Horizontal)





## **LSMEM Parameters**

| Parameter/variable                                 | Value                             | Data source                                                                 | Reference                                 |
|----------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------|-------------------------------------------|
| Soil texture (sand/clay fraction) and bulk density | Spatially distributed constants   | ISLSCP-IIO                                                                  | Hall et al., 2005                         |
| Soil surface roughness                             | 0.3 Choudhury et al., 1979        |                                                                             | 79                                        |
| Vegetation coverage/type                           | Spatially distributed climatology | MODIS, MOD-12<br>MOD-13                                                     | Friedl et al., 2002<br>Huete et al., 2002 |
| Vegetation water content                           | Spatially distributed climatology | Based on MODIS<br>LAI and land cover<br>types                               | Rodell et al., 2004                       |
| Water coverage                                     | Spatially distributed constants   | MODIS<br>classification                                                     | Hansen, et. Al.,<br>2000                  |
| Vegetation structure parameter                     | Constants based on classification | Jackson and Schmugge, 1991                                                  |                                           |
| Vegetation single scattering albedo                | 0.07                              | Average value according to Pampaloni and Paloscia, 1986; Ulaby et al., 1983 |                                           |

## **Problems and Challenges**

► Accounting for the impact of • up and senescence) in the input vege Better vegetation optical properties in MW frequency

> Due to incorrect surface parameters, the LSIVIEIVI (Torward model) predicted Tb can be biased as observations. Consequently, the reincorrect soil moisture values either or 50%).

Parameter calibration (forward model)

Impacts of active rainfall, sn<</p> frequency interference, and heavy ve

Identification and masking

## Forward Model Biases w/o Calibration



## **Multi-Channel Approach**

#### Two Models:

- □ LSMEM(retrieval mode):  $SM = f(VOD, T_b^{10GHz}, ...)$

Iteratively solve the 2 equations for 2 unknowns.

#### Why:

- 1. LSMEM provides a very sophisticated parameterization for soil moisture soil surface emissivity relationship.
- 2. UMT model (originally solves for SM too) offers a very good VOD estimation.



Vegetation Optical Depth (VOD) estimates from UMT model

## **Parameter Sensitivity**

| Parameter/variable                                 | Value                             | Data source                                                                 | Reference                                 |
|----------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------|-------------------------------------------|
| Soil texture (sand/clay fraction) and bulk density | Spatially distributed constants   | ISLSCP-IIO                                                                  | Hall et al., 2005                         |
| Soil surface roughness                             | 0.3                               | Choudhury et al., 1979                                                      |                                           |
| Vegetation coverage/type                           | Spatially distributed climatology | MODIS, MOD-12<br>MOD-13                                                     | Friedl et al., 2002<br>Huete et al., 2002 |
| Vegetation water content                           | Spatially distributed climatology | Based on MODIS<br>LAI and land cover<br>types                               | Rodell et al., 2004                       |
| Water coverage                                     | Spatially distributed constants   | MODIS classification                                                        | Hansen, et. Al.,<br>2000                  |
| Vegetation structure parameter                     | Constants based on classification | Jackson and Schmugge, 1991                                                  |                                           |
| Vegetation single scattering albedo                | 0.07                              | Average value according to Pampaloni and Paloscia, 1986; Ulaby et al., 1983 |                                           |

## **Parameter Sensitivity**



## **LSMEM Calibration**



Bias in TbH (K)



Bias in TbV (K)

## **LSMEM Calibration**



Default Sand Fraction (%)



Default Roughness (cm)

## **LSMEM Calibration**



## **Screening for Rain/Snow/Frozen Ground**



# Validation and Comparisons to SMOS L-band Retrievals

## **AMSR-E Sensor and Data Attributes**

| AIVISIT-L Selisor and Data Attributes |                                                                           |  |
|---------------------------------------|---------------------------------------------------------------------------|--|
| Instrument                            | Polar orbiting (passive microwave radiometer aboard Aqua)                 |  |
| Channels                              | 6 Channels with dual polarization (6.9, 10.7, 18.7, 23.8, 36.5, 89.0 GHz) |  |
| <b>Equatorial Crossing Time</b>       | 1:30 am (Descending); 1:30 pm (Ascending)                                 |  |
| Incidence Angle                       | Single (55°)                                                              |  |
| Soil Moisture Product                 | Level-3 on EASE grid (Equal-Area Scalable Earth Grid)                     |  |
| <b>Spatial Resolution</b>             | ~ 25 km                                                                   |  |
| Temporal Resolution                   | ~ 3 days                                                                  |  |
| Vertical Resolution                   | ~ 2 cm                                                                    |  |
| Spatial Coverage                      | Global                                                                    |  |

June 2002 to September 2011

**Temporal Coverage** 

## **SMOS Sensor and Data Attributes**

| Instrument                      | Polar orbiting (a 2-D interferometric radiometer)           |
|---------------------------------|-------------------------------------------------------------|
| Channel                         | L-band (1.4 GHz)                                            |
| <b>Equatorial Crossing Time</b> | 6 am (Ascending) and 6 pm (Descending)                      |
| Incidence Angles                | Multiple (from 0° to 55°)                                   |
| Soil Moisture Product           | Level 2 on ISEA-4h9 grid<br>(Icosahedral Snyder Equal Area) |
| Spatial Resolution              | ~ 43 km                                                     |
| Temporal Resolution             | ~ 3 days                                                    |
| Vertical Resolution             | ~ 5 cm                                                      |
| Spatial Coverage                | Global                                                      |
| Temporal Coverage               | January 2010 to Present                                     |

#### **SMOS & AMSR-E**





Source: NSIDC



A snapshot of soil moisture (% vol/vol) on September 6, 2010

#### **Ground Validation Sites**

Validation Sites: SCAN, USCRN, and SMEX03 Networks



## Validation against SMEX03 Micronets Averages



Pearson Correlation between AMSR-E and SCAN (2002/06-2011/09) Average = 0.55



Pearson Correlation between SMOS and SCAN (2010/01-2011/12) Average = 0.43



Pearson Correlation between AMSR-E and USCRN (2009/06-2011/09) Average = 0.54



Pearson Correlation between SMOS and USCRN (2010/01-2011/12) Average = 0.48



## **Summary**

| Source                     | AMSR-E                         | SMOS                           |
|----------------------------|--------------------------------|--------------------------------|
| SMEX03, Little River, GA   | 0.71<br>2003/05-2003/08        |                                |
| SMEX03, Little Washita, OK | 0.89<br>2003/06-2003/08        |                                |
| SCAN                       | 0.55 (mean)<br>2002/06-2011/09 | 0.43 (mean)<br>2010/01-2011/12 |
| USCRN                      | 0.54 (mean)<br>2009/06-2011/09 | 0.48 (mean)<br>2010/01-2011/12 |

#### **Comments**

- ➤ LSMEM/UMT joint model provides a sophisticated parameterization for both surface emissivity and dynamic vegetation optical depth.
- LSMEM (forward model) calibration helps to provide better parameters related to the surface temperature and soil properties, reduce bias in the predicted Tb, and significantly improves soil moisture retrievals.
- Formular Ground validations show very reasonable skills in AMSR-E retrievals. SMOS products are slightly less skillful, primarily due to longer revisit time and less screening for rain/snow conditions.

#### **API and Kalman Filter**

Antecedent Precipitation Index (API) Model:

$$API_i = \gamma_i API_{i-1} + P_i$$

API is a simple AR(1) model, where the state variable is an index for the moisture storage.

i = time index,  $\gamma$  = loss coefficient;  $\gamma_i = \alpha + \theta \cos(2\pi d/365)$ , d = Julian day. We set  $\alpha$  = 0.85 and  $\theta$  = 0.10.

#### Kalman Filter:

Filter Analysis Increment

$$API_{i}^{+} = API_{i}^{-} + K_{i} (\theta_{i} - (a + b API_{i}^{-}))$$

Remote Sensing Soil Moisture

Regression between Soil Moisture and API

## R<sub>value</sub> Proxy Measure

Instead of comparing remotely-sensed soil moisture to ground measurements, we look for how much the soil moisture product can contribute when it is assimilated into a simplest model for land surface dynamics – the Antecedent Precipitation Index (API) driven by poor rainfall forcings (Crow and Zhan, 2007).



## R<sub>value</sub> Proxy Measure



Negative of correlation coefficient ( $R_{value}$ ) quantifies added remote sensing contribution to the land surface model.

## **Study setup**

| Study Period        | January 2010 to September 2011                                                          |
|---------------------|-----------------------------------------------------------------------------------------|
| Time Window         | 5-day window                                                                            |
| Data Screening      | 5-day window includes data only from those days when both the compared SM are available |
| Geographic Location | Entire Continental USA (but only at SCAN sites when SCAN data are used)                 |

R<sub>value</sub> Calculated with 5-day windows



# R<sub>value</sub> Calculated with 5-day windows



## **Data Availability**





# Summary: R<sub>value</sub> Calculated with 5-day windows





## **R**<sub>value</sub> Robustness vs Testing Period Length



#### **Comments**

- SMOS produces significantly fewer retrievals than AMSR-E
- R<sub>value</sub> Proxy relies heavily on the availability of retrievals, and more retrievals help better depicting the rain-moisture response
- With same number of days when AMSR-E and SMOS data are available, SMOS achieves similar skill as AMSR-E and SCAN. The spatial patterns are similar for SMOS and AMSR-E lower in the densely vegetated east, and higher toward the central and west CONUS regions.
- The definition of  $R_{value}$  Proxy works to the advantage of AMSR-E because it focuses on significant rain events, and the SMOS screens out a lot of wet peaks. Also, the good performance of SMOS in dry periods gets suppressed by the definition of  $R_{value}$  Proxy.

# Thank You!